Inspection of stainless steel heat exchanger tube with eddy current array probe

12th EPRI Balance-of-Plant Symposium August 6th-8th, 2012

Introduction

- Context
- Eddy Current Array + Bobbin probe design
 - Overview
 - Operating principle
- Result on various calibration defects
- Comparison with low resolution array probe
- Results on real tube
- Conclusions

Context

- Non ferrous heat exchanger and condenser tubes may be affected by several damage mechanisms:
 - Pitting
 - Erosion
 - Fretting
 - Cracking
- The bobbin probe inspection faces major limitations with respect to:
 - Detection and sizing circumferential cracking
 - Evaluate circumferential extent of volumetric flaws
- Rotating probe can be use to improve the inspection but this solution remains slow
- The Eddy Current Array + Bobbin probe technology is the solution to perform high resolution inspection at the bobbin speed in a single pass.

DefHiTM Probe¹

One-Pass "Combination" Bobbin plus Array Probe

High resolution oval-coil array ¹

Centering devices

¹ US Patent Pending - Eddyfi NDT Inc.

Operating mode

- Oval-coils array + Bobbin
 - 12 transmitter
 - 12 receivers
 - 2 bobbins
 - Excitation pattern
 - 2 poles
 - 2 skip coils
 - 6 time slots for the array
 - 1 time slot for the bobbin

100

80

60

20

Results for ASME standard

- Calibration on the ID groove
- OD Pits detected on at least 2 channels
- Sizing based on phase to depth curve.

Phase (degree)

ARRAY_100kHz

29

Circumferential Cracks

- Detection of external ED notch (0.005" width)
 - 80% x 50°
 - 60% x 50°
 - 40% x 50°
 - 40% x 25°
 - 20% x 50°
- Bobbin results for the same defects

Taper Defects

 Since the probe provides an absolute signal, it is possible to see a representative profile of the defect.

Shallow Small Defects

- The high resolution of the probe allows a better detection of small isolated pit
 - 20% ID round bottom hole, 0.125" diameter
 - 20% OD flat bottom hole, 0.125" diameter

Defects at Support Plate

Wear scars

• 60%, extent: 270°

20%, extent: 270°

OD pits

• 80%, diam.: 0.375"

• 30%, diam.: 0.312"

Circumferential crack

60%, extent: 50°

Sensitivity vs Lift-Off

 Defect phase angle is constant even with high lift-off variation providing reliable depth sizing.

High Resolution Value

Reliable and repeatable detection
ASME hole scanned 3 times with 15° rotation

DefHi probe with 24 channels

High Resolution Value

Improved defect representation in C-scan
ASME 40% FBH and 4 x 20% FBH

Several coils see the defects providing uniform response

② ARRAY F2 → 500.00 0.08 -3 → 301 → 220 → □ □ 1 105.0 15.0 15.0 15.0

DefHi probe with 24 channels

Only one coil can see the defects resulting in non uniform signature.

8 channels array

Deep OD defect, large volume

Shallow isolated OD pits

OD general corrosion

OD Pit close to the TSP not detected with the bobbin

OD Isolated Pit / Corrosion – Field Tube

Conclusions

The DefHi eddy current array probe provides several benefits for non-ferrous tubing inspection:

- One-pass inspection providing bobbin and array probe signal
- High definition which provide reliable and repeatable detection of small defects whatever the position around the circumference
- High sensitivity to pitting and circumferential cracking (ID and OD circ. crack detected down to 20% depth and 25° extension)
- More reliable characterization of flaws with C-scan imaging
- Improved detection of circumferential cracking under tube sheets